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The output of a triggered-avalanche mode avalanche photodiode is modeled as Poisson-
distributed primary avalanche events plus conditionally Poisson-distributed trapped-
carrier-induced secondary events. The moment generating function as well as the mean
and variance of the diode output statistics are derived. The dispersion of the output sta-
tistics is shown to always exceed that of the Poisson distribution. Several examples are

considered in detail.

l. Introduction

When a sufficiently large enough voltage is applied across an
avalanche photodiode (APD), free carriers accelerated by the
electric field attain enough energy to generate secondary car-
tier pairs by impact ionization. This leads to carrier avalanche
and at a high enough voltage to avalanche breakdown. The
normal operating mode of APDs biased below the avalanche
breakdown voltage does not, however, have sufficiently favor-
able noise characteristics for photon counting applications.
Recent work (Refs. 1 through 3) has indicated that the APD
operated in a triggered-avalanche detection (TAD) mode might
be effective for photon-counting applications.

Suppose initially an APD is biased below avalanche break-
- down and is sufficiently cooled and shielded to eliminate all
free carriers in the APD junction region. The bias voltage is
then increased above the avalanche breakdown voltage thresh-
old, but below the zener breakdown voltage. In the absence of
free carriers in the junction, no avalanche breakdown can
occur. The presence of a single free carrier, for ‘example as 2

result of photon absorption, can initiate a self-sustaining ava-
lanche breakdown in which the current flow in the diode
grows exponentially until the bias voltage is reduced for a suf-
ficient period of time to quench the avalaniche discharge and
sweep all the free carriers from the diode junction. The large
bias can then be reapplied so that the diode can again detect
photons. This is called a triggered-avalanche detection (TAD)
mode (Refs. 1 and 2) or a Geiger-counter mode (Ref. 3) of
operation.

The TAD-mode output pulses are sufficiently large so that
no additional amplification is necessary to count them. Hence,
single-photon detection is feasible. Moreover, TAD-mode
APDs can have significant quantum efficiency improvements
over the photomultiplier tubes commonly used for photon
counting. TAD-mode APDs, however, have a problem with
carrier trapping, During each avalanche, carriers can become
trapped at dislocations and impurities within the diode. Those
trapped carriers not swept out during the quenching period
can subsequently initiate avalanches when they are released
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from the traps. Experimental results give evidence of trap life-
times of up to minutes in duration (Refs. 1 to 3) over which
carriers are released. It appears that an evaluation of the
photon counting capability of the TAD-mode APD has to
include the effect of carrier-induced avalanches.

This article considers a simple and most possibly naive sta-
tistical model to account for carrier trapping in a TAD-mode
APD, This model is then analyzed to obtain the statistics of
the diode output. The moment generating function of the
diode output statistics is derived in Section II along with the
mean and variance, Specific examples are considered in Sec-
tion III and a discussion of the results is given in Section IV.

ll. Moment Generating Function of Count
Statistics

Avalanche discharges in a TAD-mode APD are initiated
either by thermally or photon-absorption-induced free carriers
or by trap-released free carriers. The first two types of free-
carrier-induced discharges can be regarded as primary discharge
events. Since trapped carriers exist as a result of previous ava-
lanche discharges, the discharges generated by these carriers
can be regarded as secondary events, We shall make the as-
sumption here that trapped-carrier-induced secondary ava-
lanche discharges do not produce more trapped carriers. That
is, all the trapped carriers in the APD were generated by .pre-
vious primary avalanche discharge events, This simplifying as-
sumption is made to make the subsequent analysis tractable.

To describe the diode output statistics, let us define for
each ¢ > 0, the counting processes:

N, (¥) = number of primary avalanche events due to either
thermally or photon-induced free carriers occur-
ring in a time interval [0, 7).

Nz(t) = number of secondary trapped-carrier-induced ava-
lanche events in a time interval [0, £).

It can be assumed that ,(f) is a Poisson process with
intensity rate A(¢) equal to the average rate at which primary
avalanche discharge events occur, This intensity rate A(?) typi-
cally includes a constant rate at which thermally generated
carriers initiate avalanche discharges and a rate at which
photoelectron-initiated avalanches occur on the average.

We assume next that each primary avalanche event occur-
ring at time 7 will generate secondary avalanche events in the
time interval [7, o) at an average rate A(z - 7). It is assumed
that this rate function h(¢) of generating trapped-carrier ava-
lanche events by a single primary event is fixed and determin-
istic. So, it {t;}are the occurrence times of the primary ava-
lanche events, then conditioned on the counting process

70

N,(2), Ny(?) is a conditional Poisson process with intensity
rate A, (¥) given by

N ()
>\2(t) = Z h(t - ti),

i=1

t=20 (€3]

Since A, () is a random process, N, (?) is effectively a Poisson
process with random intensity rate. Such processes are called
doubly stochastic Poisson processes (Ref. 4). Moreover, A, (f)
is a filtered Poisson process or shot-noise process (Ref. 4) with
filter impulse response A(%).

The process N (z) + N,(?) then gives the total number of
avalanche .events in the TAD-mode APD output during the
time period [0, £). It is interesting to determine the statistics
of the TAD-mode APD output in some time interval after the
device has been operating for a long period of time. To deter-
mine such statistics, let 7> 0 and AT > 0 and define

AN, = N,(T+AT)- N(T)

= number of primary avalanche events in the time
interval [T, T+ AT)

AN, = N,(T+AT)- N2(T)
= number of secondary avalanche events in the time
interval [T, T+ AT)

The random variables of interest are then

AN1 + AN2 = total number of avalanche events in the
TAD-mode APD in the time interval
[T, T + AT)

Assume that the device started operation at ¢ = 0. Then
AN, + AN, represents the number of avalanche events in the
TAD-mode APD output during a time interval of length AT
after the device has already been operating for a time period of
length T, The case of particular interest is then when T is sig-
nificantly larger than AT.

Teich and his collaborators (Ref. 5) have studied doubly
stochastic Poisson processes such as N,(z). They have deter-
mined the moment generating function and several of the
moments of AV, + AN, only in the case when T = 0 and
hence are not useful here. Our goal is to determine the
moment generating function (mgf)

o(s) = E [e~5(aN1+AN,)] ()

of AN, + AN, for general A(7) and A(#). The moments of
AN, + AN, can also be determined using this mgf. A detailed
derivation given in Appendix A shows that

o(s) = 9,(5) * 9,(5) (3)




where

_ T
8,(6) = exp f A7)
0

T+AT
X [expg(e"’— l)f h(t- 1) dtg- l]d'r} @
T

and

T+AT
6,) = oxp { f A7)
T

T+AT
X [e"s exp{(e"“ l)f h(t - 'r)dt;- ]d’r
T

&)

To understand the significance of ¢,(s) and ¢,(s), consider
the following special cases. First, suppose that A(#) = O for
0 < ¢ < T. Then ¢(s) = ¢,(s). In this case there are no primary
events in the time interval [0, T). Hence, we can conclude that
,(s) is the mgf of the sum of the primary events in the time
interval [T, T + AT) plus the secondary events in this time
period caused by these primaries. Next, consider when A(¢) = 0
for T <t < T + AT. Then ¢(s) = ¢,(s). In this case, there are
no primary events in the time interval [T, T + AT). Hence
¢,(s) is the mgf of the secondary events in the time interval
[T, T + AT) caused by the primary events in the interval
[0, T). Since ¢,(s) depends only on AZ) for 0 <?< T and
¢,(s) depends only on A(¢) for T< ¢t < T + AT, these two con-
clusions hold in general. Also, note the statistical indepen-
dence of these two count sums, which is a result of the inde-
pendent increments property of V, (£).

Finally, derivatives of ¢(s) at s = O can be determined to
obtain the moments of AV, + AN, . It can be shown that

T Tr+AT
-9,(0) = f 7\(7)[ f h(-7) a’t] dr (6)
0 T .
) T
$,(0) = ¢, (0% + f A(T)
©= [so)*- |

T+AT T+AT 2
xf h(-r)dz+(f h(t—'r)dt) dr
T T

(M

T+AT T+AT
-¢,(0) = [ f A7) f Wt - 1) dt] dr
T T
T+AT
+ f AT)dr . (8)
T

: T+AT
~4,(0) = [¢,(0)]? +f A7)

T

[ T+AT _ T+AT 2
X f h(t-7)dr + (f h(t-1) dt) ]dT
T T

T+AT T+AT
+ 2f A7) [f ai-1) d{ld‘r
T T

' T+AT
+ f Ar)dT 9
T

_Hence, it follows from Eqs. (3), (6), and (8) that the mean of

AN, + AN, is given by

T+AT T+AT
E[AN, +AN,] = f ?\('r)[ f (e~ 7) dt]dr
T T

T+AT _ :
+f N7) dT (10)
T

Since

T+AT
f Mr)dr
T

is the average number of primary events in the time interval
[T, T + AT), it follows that the first term in Eq. (10) is the
average number of secondary events in that interval. Moreover,
Eq. (6) gives the average number of secondaries in [T, T+ AT)
that are a result of primaries in [0, 7).

The variance of AN, + AN, is obtained from Egs. (3), (7),

~ and (9) and is given by
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T

T+AT 2
+(f ait-1) dt) dr
T
T+AT
+ 2f MT)
T
T+AT
X f h(t- 1) dt|dr
T

T+AT
+ f Ar)dr (11)
T

T+AT T+AT
var (AN, +AN,) =f A(T) f h(t-7)dt
o

Note that

T+AT
f () dr
T

is the variance of the primary count in {7, T + 7). Note from
Eq. (7) that the variance of the secondaty countin [T, T + T)
due to primaries in [0, 7) is given by

T T+AT T+AT 2
f M) f h(t-7)dt + (f nit-1) dt) dr
0 T T

(12)

Hence, it follows that

T+AT T+AT T+AT 2
f A7) f h(t-7)dt + (f h(t-1) dt) dr
T T T

(13)

must be the variance of the secondary count in [T, T + AT)
due to primaries in that same interval. So the first term in
Eq. (11) represents the variance of the total secondary count
in [T, T + AT). Moreover, an examination of Eqgs. (9) and (13)
yields the obvious conclusion that the second term in Eq. (11)
is the covariance between the primary and secondary counts in
{T, T + AT).

Another interesting statistic for counting distributions is
the dispersion or variance-to-mean ratio of the distribution.
The dispersion of a Poisson counting distribution is equal to
one, It is then of some interest to compare dispersions with
that of the Poisson distribution, Here

T+AT T+AT 2 T+AT T+AT
var (AN, +AN,) 1+J; )\('r)[j; h(t-r)dt] dT+2-[2: )\(T)[fT h(t_T)dt:ld,

lil. Examples

E[AN| +AN,] T+AT T+AT T+AT (14)
f 7\(7)[ h(t- 1) dt] dr + f AT dr
0 T
Hence, the quotient term in Eq. (14) gives the excess disper- and
sion over the dispersion of the Poisson distribution. This
implies that the distribution of AN, + AN, has a wider spread 4, 0<:1<T,
about its mean than the Poisson distribution. nt) =
0, otherwise
where
Example 1: Constant Light Source and Constant Rate of .
< <
Trapped Carrier Induced Events AT< T, < T (see Fig. 1) (13)

Consider when

A() = N\ = constant
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An average constant rate X of primary avalanche events per
unit time is generated here as a result of either photoelectrons
or thermally induced free carriers in the diode. Moreover, it




is assumed that each primary avalanche event will, on the
average, generate trapped induced secondary events at a
constant rate A per unit time over a time period of length
T,. We assume that T > T, so that the diode has reached a
steady-state condition. We also assume for convenience that
the avalanche event counting interval AT < T,. Experimental
work (Refs. 1 and 3) has reported 7, ranging from a few
milliseconds to minutes. Since N,(?) is a doubly stochastic
Poisson process, AT, represents the average number of sec-
ondary avalanche events generated per primary event. There
is experimental work (Ref. 3) that indicates that A7, ='0.1
may be achieved with commercial APDs.

For this example, it is easy to show that

0, 0<7<T-T,

A(r- T+Th), T- Th<T<T— T, +AT

T+AT
f a(t-1)dt =
T

A(ATD), T-T,+AT<7<T

A(T+AT-7), T<r<T+AT
(16)
Substitution of Eq. (16) into Egs. (3) through (5) yields

56) = oxp {i fexp (7= DA@DY-1] _ X(An}
: A(S-1)
« exp (N (T, - AT) [exp {(¢7° - DAQT} - 1]}

- { A e [exp {(6° - 1) AAT) - 1] -X(AT)}
A(e™5-1)

(17)

The product of the first two exponential factors in Eq. (17)
is the mgf ¢,(s) and the last exponential factor is the mgf
¢,(s). The second exponential factor turns out to be the mgf
of a two-parameter Neyman Type-A probability distribution
(Ref. 6). Hence all three exponential factors in Eq. (17) are
mefs.

Substitution of Eq. (16) into Eqgs. (10) and (11) yields
- (18)

var (AN, +AN,) = AT, (AAT) +7AT +XT, (A ATY

E[AN,+AN,] = \AT +XT,(4AT)

_ = 3
FSaT(aar - SATUADY

(19)

The first term in-Eq. (18) is the average number of primaries
and the second term is the average number of secondaries.
Note that the average number of secondaries is equal to (the
average number of primaries over a time interval of length
T,) X (average number of secondaries per primary) = (7\Th) X
(AAT). This is about (AAT) (AAT) less than one would
expect at a first glance. The loss is due to edge effects as
evidenced in Eq. (16). The dispersion is given by

var (AN, +AN,)
E[AN, +AN,] ~

AT, (AAT)? +XAT(AAT) - @.3&&723

NAT +XT,(AAT)

1+

(20)

The excess dispersion over the dispersion of the Poisson dis-
tribution is of the order AAT + O(AT)? as AT — 0. So, as
AT - 0, the dispersion approaches that of the Poisson dis-
tribution. In fact, the distribution of AN, + AN, tends to a
Poisson distribution as AT = 0. To show this, assume that AT
is small so that

exp {(e™* - 1) A(AT)} ~

1+(e~5- N A(AT) + (21)

(67"~ 1) 4*(AT)?
2

Substitution of the approximation (21) into Eq. (17) yields

96) ~ oxp {i«a—s- (AT + Xe‘*‘(e“-znA(Anz}

. exp'{ e - ) A(ATY? }

. exp }i(e"‘— 1) A(AT) (T, - AT)

. NEe™ - 1) (4AT) (T, - AT)}
2

= exp {NAT+XT,(4AD)] (- 1)}
. exp 2[7\AT(AAT) +N(T,, - AT) (AAT)?] Q‘fs—z‘l)_z}

~ exp {RAT +AT,(AAT)] (7 - 1)} (22)
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which is a Poisson distribution with mean AAT + XTh(A AT).
(The last approximation in Eq. (22) drops terms of order
0((AT)?)). The final approximation has the same mean

(Eq. (18)) as ¢(s).

Example 2: Constant Light Source and Exponential Rate of
Trapped Carrier Induced Events

-Consider when A(f) is again constant as given by Eq. (6)
and

1) = (ad) & "M (23)

(see Fig. 2) where A and T}, can be taken to be the same par-
ameters as those in Eq, (15) for comparisons with' the rectan-
gular () of Example 1. Since T,/a is the time constant in
Eq. (23), the case where ¢ > 1 is of most interest for com-
parison to the rectangular case. Also note that the areas
under Eqgs. (15) and (23) are both equal to AT,

It is easy to show that

_ AT
AT, (1 - TWD ) e T o<
T+AT
f h(t-7)dt =
;o

AT, (1 - e“T*”‘T)"Th/“)), T<7<T+AT

(24)
Substitution of Eq. (24) into Egs. (3) through (5) yields
_ T
#(s) = exp ;7\] [exp -K, e PT- - 1] dr}
0
_ THAT
* exp { A f [e™* exp {- K,
T
(1< HTHATIY) ) dT% (25)
where
. - AT
K = (1-e7)(4T) (l—e Th/") (26)
K, = (1-¢)(4T,) 27
B = (T,/a)"! (28)

The integrals in Eq. (25) can be expressed in terms of variants
of the Exponential Integral function (Ref. 7, Chapter 5). It
_can be shown that for s 2 0,
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9(s) = exp }—2— [- E(K,) +E, (K, ¢)- m}

. exp %% [e™CHE2) (Ei(K,) - Ei (K, ¢ PAT)) - ﬂAT]}
(29)

and for s <0,

#(s) = exp %‘- [Ei(-K,)-Ei(-K &) - BT]

" exp { % [6KD) (- E (-K,) +E, (- K, eF2T)}
- 6AT] } 6o

where the BExponential Integral functions £;(+) and Ei ()
are given in Ref. 7, Chapter 5. Finally substitution of Eq. (24)
into Eqgs. (10) and (11) yields

E[AN, + AN,] =

_ _ __T _ AT\ 4T?
MT + AT, (AAT) -¢ Tn |1 -e Tl _ h

(1)
var (AN, + AN,) =
E [AN, + AN,]
(AT,) (AT, )? _ar? - 2T
+ g (1-e Tule |1 TP
- -
+ NAT(AT,)* + 2NAT(AT,)
X AT
_ 2T,(AT) (1+4T) <1 S Th/a)
a N
(AT,) (AT,)? _2AT :
+ ——h—i;—h— 1~¢ Tnia (32)

Note that as T — oo, the average count given by Eq. (31)
approaches the average count (Eq. (18)) in the rectangular
h(?) case. As AT - 0, the variance approaches the mean and
so the dispersion again tends to that of a Poisson distribution.
In fact, the distribution of AN, + AN, again tends to a




Poisson distribution as AT —> 0. This can be established by
using the approximations

E (x) = -y-Inx+x

Eix) = y+Ilnx +x

for small x > 0 (where vy is Euler’s constant) in Eqs. (29)
and (30), assuming that a4 AT < 1 and AT/(T,/e) <1 and
T~ o0, Under these assumptions it can be shown that

¢(s) ~ (33)
which is the same asymptotic Poisson distribution Eq. (22)
as that in the rectangular 4(¢) case when AT — 0, This is so
because the primary events are Poisson distributed. So, given
a fixed number of events in an interval, the occurrence times
are uniformly distributed. This would then tend to average
out the exponential A(¢) to produce an effective rectangular

h(r).

Example 3: Pulsed Light Source and Constant Rate of
Trapped Carrier Induced Events

exp {[AAT + AT, (AAT)] (7~ 1)}

Consider a rectangular 2 (¢) given by Eq. (15) and a pulsed
- intensity rate A(f) given in Fig. 3. That is, \(¢) is periodic of
period T}, and pulse duration t, and pulse height X. We assume
that 72> 7, and T + AT < Ty -and T, = 7, + T, In this case,
AN, + AN, will be the total count in any AT-second interval
between pulses in steady state. So

T+AT
f h(t- r)ydr = AAT, 0<’r<7p
T

and hence Eqs. (3) through (5) yield

9(s) = exp {(t)) [exp {(¢7°- 1) 4AT} - 1]} (34)

This is the mgf of a two-parameter Neyman Type-A distribu-
tion, Here

E [AN, + AN,] = (\7,)(4AT) (35)

var (AN, + AN,) = (1 +AAT)E [AN, + AN,] (36)
Again, as AT - 0, ¢(s) approaches a Poisson mgf with the

same mean (Eq. (35)).

Example 4: Pulsed Light Source and Exponential Rate of
Trapped Carrier Induces Events

Consider A(?) given as in Fig. 3 and an exponential 4(¢)
given by Eq. (23). We assume here T > 7, and that 7>

(T, /a), the time constant of the exponential 4(¢). We also
assume that T+ AT < T,. Then, as shown for Egs. (24) and
(25), it can be shown that

T ,
f fexp {- K, eP*} - 1] dx

T-'rp

#(s) = exp ’ ;
(37

where X, and f are given by Eqgs. (26) and (28), respectively.
The integral in Eq. (37) can be expressed in terms of Expo-
nential Integral functions as in Eqs. (29) and (30).

In fact,
X - N
exp :E [- B, (K, ¢ ")) + B (K, e7FT) - Br,] ; ,

ifs=0
#(s) =

P [Ei (- K, e PTp)) - Fi (- K, - ﬂT”]} ’

if s <0
(38)

It can also be shown that

E[AN, + AN,] =

T

T
Tula_ ) e (Tnfd)

(39)

(AT,) (4T,) (1 )

a

_ AT
(Th/a))(e

and

var (AN, + AN,) =

E [AN, + AN,]

. AT, (AT, )
2

2
(1 -e Th/a ) ( Ty - 1) e (Th/ﬂ)

(40)

Note that as AT — 0, the variance approaches the mean. In
fact, it can be shown that as AT ~ 0, ¢(s) approaches a
Poisson mgf with mean given by

—b - T
(AT,) (4AT) ( Tule - ) e Tnlt @1
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IV. Conclusions

In this article, moment generating functions of the output
count statistics of a TAD-mode APD were derived under the
assumptions that the primary avalanche events are Poisson
distributed and the secondary trapped-carrier-induced avalanche
events generated by each primary event are conditionally
Poisson, The mean and variance of the distributions were also
derived, Examples of constant light source and pulsed light
source excitation and constant and exponential decaying rate
of secondaries generated per primary were considered. It is
shown that the dispersion of the distribution is always larger

than that of the Poisson. In each of the examples, the dis-
tribution approached a Poisson distribution when the count
interval tended to zero.

We should note that trapped carriers generated by a par-
ticular primary event were assumed to be unaffected by
future avalanche events. It was also assumed that trapped-
carrier-induced avalanche events do not themselves produce
more trapped carriers. These simplifying assumptions were
made in the interest of analytical tractability. Hence the use-
fulness of these results need to be established experimentally.
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Appendix A
Derivation of ¢(s)

First we note that

$(s) = e™* PIAN, + AN, = k]

k=0
bt o Kk

=3 ek S P[AN, + AN, = K, AN, = LN,(T) = i]
k=0 =0 R=0
0 k Py

@ Z 2 oSk {Z P[AN, = k- R] AN, = &N (T) = i] *P[AN, = ¢] - P[N(T) = i]: (A-1)
k=0 =0 =0

(.E) E E e—SU+R) ZP[ANz = leNl = Q’NI(T) = {] .p[ANl = 9] 'P[NI(T) = i]}
j=0 2=0 i=0

= i P[N/(T) = i] [i e"*P[AN, = 8] - ie’”P[ANZ = jlAN, = L, N (T) = z']”

. =0 =0 j=0

where Subequation (1) is because N, (¢) has independent increments and Subequation (2) is obtained by settingj =% -1 and
noting that

[l k

DIRDIDS

k=0 8=0 =0 2=0

Next consider i > 1 and £ > 1 and suppose that NV, (T) =i and AV, = R Then'let #;, - * -, ¢; be the primary event occurrence
times in [0, T)and #,, ,, ' - *, £, the occurrence times in [T, T + AT). Then
i+2  AT+AT i
. . (Z f h(t - tm)dt>
i , . - =1vYT
3 e P[AN, = j1AN, = ,N,(T) = i] = E, Do ey T

AR rt'+Q
j=0 1 ' ]':0

i+ T+AT (A-2)
. exp(— 3 ht - tm)dt) AN, = &, N/(T) = i
m=1 T

i+2 T+AT
= Etl»' *atieg I—Il o {(e—s— 1)'/;' h(t-”tm)dt IANl = Q’Nl(T) =1
m:

78




W i . T+AT D
=B, ..., ;[1 exp{(e - 1)1; ne-t,)dt {\N,(T) = i

49 T+ AT / ‘ > &)
. E'i+1,' ety [ H exp {(‘;‘3_ 1)]; h(t- tm)d't ; |AN = 8 |

m=it+1

@

i,y
K'-H )

T T+AT
f A(7) exp [(e's -1 f h(t-71) dt:l dr
0 T

K = - (A3)

T
f Mr)dr
0

where

and

T+AT T+AT
f A7) exp [(e"s -1 f h(t- 1) dt] dr
7 ’ T )

H = (A-4)
T+AT

' f AT dr

T

The independent increments property of NV, (?) is used to obtain Subequatioh (1) in Eq. (A-2) and follows from known properties
of the conditional distribution of occurrence times, given the number of events in a fixed time interval foi a Poisson process
(Ref. 4).

Next, we note from the derivation that the final result in Eq. (A-2)is valid when either 7 =0 or £ = 0 or both { = 2 = 0. Finally,
substitution of Egs. (A-2), (A-3), and (A-4) into Eq. (A-1) yields:

#s) = { D K*P[N,(T) = i]} ;Z (He's)’zP[ANl - 9]}

=0 =0

1}
Ms
.

T
exp (-— f A7) d’r) (A-5)
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T T+AT
= exp f M) | exp {(e‘s- l)f h(t- 1) dt{ - 1| ar
0 T
T+ar T+AT
" eXp f A7) |:e'“° exp {(e's— 1) [ h(t - 7) dt} -1|ar
T T

(A-5)



